978 research outputs found

    Kinetic Modeling of Solketal Synthesis from Glycerol and Acetone Catalyzed by an Iron(III) Complex

    Get PDF
    In the last few years, the depletion of the fossil sources and their negative effect on the environment has led to find new alternatives; among these, biodiesel is considered one of the most promising for this purpose. Biodiesel can be produced from the transesterification of vegetable oils or animal fats, obtaining glycerol as a by-product. Glycerol can be used in different processes and one of the most interesting is the condensation with acetone to produce solketal. Among its applications, plasticizers, solvents, and pharmaceutical formulations are the most common. In this work, the attention was focused on the reaction between glycerol and acetone to give solketal promoted by an iron(III) complex. The reaction mechanism was hypothesized, and the kinetics was studied in a batch reactor. Finally, the thermodynamic and kinetic parameters were determined with a reliable model investigating the phenomena that occurred in the reaction network. Keywords

    Viroids: From Genotype to Phenotype Just Relying on RNA Sequence and Structural Motifs

    Get PDF
    As a consequence of two unique physical properties, small size and circularity, viroid RNAs do not code for proteins and thus depend on RNA sequence/structural motifs for interacting with host proteins that mediate their invasion, replication, spread, and circumvention of defensive barriers. Viroid genomes fold up on themselves adopting collapsed secondary structures wherein stretches of nucleotides stabilized by Watson–Crick pairs are flanked by apparently unstructured loops. However, compelling data show that they are instead stabilized by alternative non-canonical pairs and that specific loops in the rod-like secondary structure, characteristic of Potato spindle tuber viroid and most other members of the family Pospiviroidae, are critical for replication and systemic trafficking. In contrast, rather than folding into a rod-like secondary structure, most members of the family Avsunviroidae adopt multibranched conformations occasionally stabilized by kissing-loop interactions critical for viroid viability in vivo. Besides these most stable secondary structures, viroid RNAs alternatively adopt during replication transient metastable conformations containing elements of local higher-order structure, prominent among which are the hammerhead ribozymes catalyzing a key replicative step in the family Avsunviroidae, and certain conserved hairpins that also mediate replication steps in the family Pospiviroidae. Therefore, different RNA structures – either global or local – determine different functions, thus highlighting the need for in-depth structural studies on viroid RNAs.Research in Ricardo FLores laboratory is presently supported by grant BFU2011-28443 from the Ministerio de Educación y Ciencia (MEC) of Spain. During this work Pedro Serra has been supported by postdoctoral contracts from the Generalitat Valenciana (APOSTD/2010, program VALi+d) and the MEC (program Juan de la Cierva), and Sofia Minoia by a predoctoral fellowship from the MEC.Peer reviewedPeer Reviewe

    Viroid diseases in pome and stone fruit trees and Koch s postulates: a critical assessment

    Full text link
    [EN] Composed of a naked circular non-protein-coding genomic RNA, counting only a few hundred nucleotides, viroids¿the smallest infectious agents known so far¿are able to replicate and move systemically in herbaceous and woody host plants, which concomitantly may develop specific diseases or remain symptomless. Several viroids have been reported to naturally infect pome and stone fruit trees, showing symptoms on leaves, fruits and/or bark. However, Koch¿s postulates required for establishing on firm grounds the viroid etiology of these diseases, have not been met in all instances. Here, pome and stone fruit tree diseases, conclusively proven to be caused by viroids, are reviewed, and the need to pay closer attention to fulfilling Koch¿s postulates is emphasized. View Full-TextThis project has received funding from the European Union's Horizon 2020 Research and Innovation Scientific Exchange Program under the Marie Sklodowska-Curie grant agreement No. 734736. This publication reflects only the authors' view. The Agency is not responsible for any use that may be made of the information it contains.Di Serio, F.; Ambros Palaguerri, S.; Sano, T.; Flores Pedauye, R.; Navarro, B. (2018). Viroid diseases in pome and stone fruit trees and Koch s postulates: a critical assessment. Viruses. 10(11). https://doi.org/10.3390/v101106121011Diener, T. O. (1971). Potato spindle tuber «virus». Virology, 45(2), 411-428. doi:10.1016/0042-6822(71)90342-4Flores, R., Minoia, S., Carbonell, A., Gisel, A., Delgado, S., López-Carrasco, A., … Di Serio, F. (2015). Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Research, 209, 136-145. doi:10.1016/j.virusres.2015.02.027López-Carrasco, A., & Flores, R. (2016). Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A «naked» rod-like conformation similar but not identical to that observed in vitro. RNA Biology, 14(8), 1046-1054. doi:10.1080/15476286.2016.1223005López-Carrasco, A., & Flores, R. (2017). The predominant circular form of avocado sunblotch viroid accumulates in planta as a free RNA adopting a rod-shaped secondary structure unprotected by tightly bound host proteins. Journal of General Virology, 98(7), 1913-1922. doi:10.1099/jgv.0.000846Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243Di Serio, F., Flores, R., Verhoeven, J. T. J., Li, S.-F., Pallás, V., Randles, J. W., … Owens, R. A. (2014). Current status of viroid taxonomy. Archives of Virology, 159(12), 3467-3478. doi:10.1007/s00705-014-2200-6Di Serio, F., Li, S.-F., Matoušek, J., Owens, R. A., Pallás, V., … Randles, J. W. (2018). ICTV Virus Taxonomy Profile: Avsunviroidae. Journal of General Virology, 99(5), 611-612. doi:10.1099/jgv.0.001045Diener, T. O., Smith, D. R., & O’Brien, M. J. (1972). Potato spindle tuber viroid. Virology, 48(3), 844-846. doi:10.1016/0042-6822(72)90166-3Diener, T. O. (1972). Potato spindle tuber viroid. Virology, 50(2), 606-609. doi:10.1016/0042-6822(72)90412-6Semancik, J. S. (1970). Properties of the Infectious Forms of Exocortis Virus of Citrus. Phytopathology, 60(4), 732. doi:10.1094/phyto-60-732Semancik, J. S., Morris, T. J., & Weathers, L. G. (1973). Structure and conformation of low molecular weight pathogenic RNA from exocortis disease. Virology, 53(2), 448-456. doi:10.1016/0042-6822(73)90224-9Bos, L. (1981). Hundred years of Koch’s Postulates and the history of etiology in plant virus research. Netherlands Journal of Plant Pathology, 87(3), 91-110. doi:10.1007/bf01976645Schumacher, J., Randles, J. W., & Riesner, D. (1983). A two-dimensional electrophoretic technique for the detection of circular viroids and virusoids. Analytical Biochemistry, 135(2), 288-295. doi:10.1016/0003-2697(83)90685-1Flores, R., Duran-Vila, N., Pallas, V., & Semancik, J. S. (1985). Detection of Viroid and Viroid-like RNAs from Grapevine. Journal of General Virology, 66(10), 2095-2102. doi:10.1099/0022-1317-66-10-2095Serio, F. D., Malfitano, M., Alioto, D., Ragozzino, A., Desvignes, J. C., & Flores, R. (2001). Apple dimple fruit viroid: Fulfillment of Koch’s Postulates and Symptom Characteristics. Plant Disease, 85(2), 179-182. doi:10.1094/pdis.2001.85.2.179Pallas, V., Navarro, A., & Flores, R. (1987). Isolation of a Viroid-like RNA from Hop Different from Hop Stunt Viroid. Journal of General Virology, 68(12), 3201-3205. doi:10.1099/0022-1317-68-12-3201Navarro, B., & Flores, R. (1997). Chrysanthemum chlorotic mottle viroid: Unusual structural properties of a subgroup of self-cleaving viroids with hammerhead ribozymes. Proceedings of the National Academy of Sciences, 94(21), 11262-11267. doi:10.1073/pnas.94.21.11262De la Pena, M., Navarro, B., & Flores, R. (1999). Mapping the molecular determinant of pathogenicity in a hammerhead viroid: A tetraloop within the in vivo branched RNA conformation. Proceedings of the National Academy of Sciences, 96(17), 9960-9965. doi:10.1073/pnas.96.17.9960Bellamy, A. R., & Ralph, R. K. (1968). [104] Recovery and purification of nucleic acids by means of cetyltrimethylammonium bromide. Nucleic Acids, Part B, 156-160. doi:10.1016/0076-6879(67)12125-3Codoñer, F. M., Darós, J.-A., Solé, R. V., & Elena, S. F. (2006). The Fittest versus the Flattest: Experimental Confirmation of the Quasispecies Effect with Subviral Pathogens. PLoS Pathogens, 2(12), e136. doi:10.1371/journal.ppat.0020136Hashimoto, J., & Koganezawa, H. (1987). Nucleotide sequence and secondary structure of apple scar skin viroid. Nucleic Acids Research, 15(17), 7045-7052. doi:10.1093/nar/15.17.7045Zhu, S. F., Hadidi, A., & Hammond, R. W. (1998). AGROINFECTION OF PEAR AND APPLE WITH DAPPLE APPLE VIROID RESULTS IN SYSTEMIC INFECTION. Acta Horticulturae, (472), 613-616. doi:10.17660/actahortic.1998.472.81OSAKI, H., KUDO, A., & OHTSU, Y. (1996). Japanese Pear Fruit Dimple Disease Caused by Apple Scar Skin Viroid (ASSVd). Japanese Journal of Phytopathology, 62(4), 379-385. doi:10.3186/jjphytopath.62.379Ito, T., & Yoshida, K. (1998). REPRODUCTION OF APPLE FRUIT CRINKLE DISEASE SYMPTOMS BY APPLE FRUIT CRINKLE VIROID. Acta Horticulturae, (472), 587-594. doi:10.17660/actahortic.1998.472.78Hadidi, A., & Yang, X. (1990). Detection of pome fruit viroids by enzymatic cDNA amplification. Journal of Virological Methods, 30(3), 261-269. doi:10.1016/0166-0934(90)90068-qKyriakopoulou, P. E., & Hadidi, A. (1998). NATURAL INFECTION OF WILD AND CULTIVATED PEARS WITH APPLE SCAR SKIN VIROID IN GREECE. Acta Horticulturae, (472), 617-626. doi:10.17660/actahortic.1998.472.82Ambros, S., Desvignes, J. C., Llacer, G., & Flores, R. (1995). Pear blister canker viroid: sequence variability and causal role in pear blister canker disease. Journal of General Virology, 76(10), 2625-2629. doi:10.1099/0022-1317-76-10-2625Sano, T., Hataya, T., Terai, Y., & Shikata, E. (1989). Hop Stunt Viroid Strains from Dapple Fruit Disease of Plum and Peach in Japan. Journal of General Virology, 70(6), 1311-1319. doi:10.1099/0022-1317-70-6-1311Flores, R., Hernández, C., Desvignes, J. C., & Llácer, G. (1990). Some properties of the viroid inducing peach latent mosaic disease. Research in Virology, 141(1), 109-118. doi:10.1016/0923-2516(90)90060-vMalfitano, M., Di Serio, F., Covelli, L., Ragozzino, A., Hernández, C., & Flores, R. (2003). Peach latent mosaic viroid variants inducing peach calico (extreme chlorosis) contain a characteristic insertion that is responsible for this symptomatology. Virology, 313(2), 492-501. doi:10.1016/s0042-6822(03)00315-5Puchta, H., Luckinger, R., Yang, X., Hadidi, A., & S�nger, H. L. (1990). Nucleotide sequence and secondary structure of apple scar skin viroid (ASSVd) from China. Plant Molecular Biology, 14(6), 1065-1067. doi:10.1007/bf00019406KOGANEZAWA, H. (1985). Transmission to apple seedlings of a low molecular weight RNA extracted from apple scar skin diseased trees. Japanese Journal of Phytopathology, 51(2), 176-182. doi:10.3186/jjphytopath.51.176Koganezawa, H. (1986). FURTHER EVIDENCE FOR VIROID ETIOLOGY OF APPLE SCAR SKIN AND DAPPLE APPLE DISEASES. Acta Horticulturae, (193), 29-34. doi:10.17660/actahortic.1986.193.2Yamaguch, A., & Yanase, H. (1976). POSSIBLE RELATIONSHIP BETWEEN THE CAUSAL AGENT OF DAPPLE APPLE AND SCAR SKIN. Acta Horticulturae, (67), 249-254. doi:10.17660/actahortic.1976.67.31Desvignes, J. C., Grasseau, N., Boyé, R., Cornaggia, D., Aparicio, F., Di Serio, F., & Flores, R. (1999). Biological Properties of Apple Scar Skin Viroid: Isolates, Host Range, Different Sensitivity of Apple Cultivars, Elimination, and Natural Transmission. Plant Disease, 83(8), 768-772. doi:10.1094/pdis.1999.83.8.768Walia, Y., Dhir, S., Bhadoria, S., Hallan, V., & Zaidi, A. A. (2011). Molecular characterization of Apple scar skin viroid from Himalayan wild cherry. Forest Pathology, 42(1), 84-87. doi:10.1111/j.1439-0329.2011.00723.xDi Serio, F., Aparicio, F., Alioto, D., Ragozzino, A., & Flores, R. (1996). Identification and molecular properties of a 306 nucleotide viroid associated with apple dimple fruit disease. Journal of General Virology, 77(11), 2833-2837. doi:10.1099/0022-1317-77-11-2833Di Serio, F., Giunchedi, L., Alioto, D., Ragozzino, A., & Flores, R. (1998). IDENTIFICATION OF APPLE DIMPLE FRUIT VIROID IN DIFFERENT COMMERCIAL VARIETIES OF APPLE GROWN IN ITALY. Acta Horticulturae, (472), 595-602. doi:10.17660/actahortic.1998.472.79Roumi, V., Gazel, M., & Caglayan, K. (2017). First report of Apple dimple fruit viroid in apple trees in Iran. New Disease Reports, 35, 3. doi:10.5197/j.2044-0588.2017.035.003He, Y.-H., Isono, S., Kawaguchi-Ito, Y., Taneda, A., Kondo, K., Iijima, A., … Sano, T. (2010). Characterization of a new Apple dimple fruit viroid variant that causes yellow dimple fruit formation in ‘Fuji’ apple trees. Journal of General Plant Pathology, 76(5), 324-330. doi:10.1007/s10327-010-0258-xChiumenti, M., Torchetti, E. M., Di Serio, F., & Minafra, A. (2014). Identification and characterization of a viroid resembling apple dimple fruit viroid in fig (Ficus carica L.) by next generation sequencing of small RNAs. Virus Research, 188, 54-59. doi:10.1016/j.virusres.2014.03.026ITO, T., KANEMATSU, S., KOGANEZAWA, H., TSUCHIZAKI, T., & YOSHIDA, K. (1993). Detection of a Viroid Associated with Apple Fruit Crinkle Disease. Japanese Journal of Phytopathology, 59(5), 520-527. doi:10.3186/jjphytopath.59.520Sano, T., Yoshida, H., Goshono, M., Monma, T., Kawasaki, H., & Ishizaki, K. (2004). Characterization of a new viroid strain from hops: evidence for viroid speciation by isolation in different host species. Journal of General Plant Pathology, 70(3), 181-187. doi:10.1007/s10327-004-0105-zNakaune, R., & Nakano, M. (2008). Identification of a new Apscaviroid from Japanese persimmon. Archives of Virology, 153(5), 969-972. doi:10.1007/s00705-008-0073-2Hernandez, C., Elena, S. F., Moya, A., & Flores, R. (1992). Pear Blister Canker Viroid is a Member of the Apple Scar Skin Subgroup (apscaviroids) and also has Sequence Homology with Viroids from other Subgroups. Journal of General Virology, 73(10), 2503-2507. doi:10.1099/0022-1317-73-10-2503Lemoine, J. (1986). PROBLEMS REGARDING THE DETECTION OF GRAFT TRANSMITTED PEAR CANKER. Acta Horticulturae, (193), 251-260. doi:10.17660/actahortic.1986.193.43Ambrós, S., Llácer, G., Desvignes, J. C., & Flores, R. (1995). PEACH LATENT MOSAIC AND PEAR BLISTER CANKER VIROIDS: DETECTION BY MOLECULAR HYBRIDIZATION AND RELATIONSHIPS WITH SPECIFIC MALADIES AFFECTING PEACH AND PEAR TREES. Acta Horticulturae, (386), 515-521. doi:10.17660/actahortic.1995.386.74Flores, R., Hernandez, C., Llacer, G., & Desvignes, J. C. (1991). Identification of a new viroid as the putative causal agent of pear blister canker disease. Journal of General Virology, 72(6), 1199-1204. doi:10.1099/0022-1317-72-6-1199Desvignes, J. C., Cornaggia, D., Grasseau, N., Ambrós, S., & Flores, R. (1999). Pear Blister Canker Viroid: Host Range and Improved Bioassay with Two New Pear Indicators, Fieud 37 and Fieud 110. Plant Disease, 83(5), 419-422. doi:10.1094/pdis.1999.83.5.419SASAKI, M., & SHIKATA, E. (1977). On Some Properties of Hop Stunt Disease Agent, a Viroid. Proceedings of the Japan Academy. Ser. B: Physical and Biological Sciences, 53(3), 109-112. doi:10.2183/pjab.53.109Ohno, T., Takamatsu, N., Meshi, T., & Okada, Y. (1983). Hop stunt viroid: molecular cloning and nucleotide sequence of the complete cDNA copy. Nucleic Acids Research, 11(18), 6185-6197. doi:10.1093/nar/11.18.6185Kofalvi, S. A., Pall√°s, V., Marcos, J. F., Candresse, T., & Ca√±izares, M. C. (1997). Hop stunt viroid (HSVd) sequence variants from Prunus species: evidence for recombination between HSVd isolates. Journal of General Virology, 78(12), 3177-3186. doi:10.1099/0022-1317-78-12-3177Amari, K., Gomez, G., Myrta, A., Di Terlizzi, B., & Pallás, V. (2001). The molecular characterization of 16 new sequence variants of Hop stunt viroid reveals the existence of invariable regions and a conserved hammerhead-like structure on the viroid molecule The sequences described in this work have been deposited in the EMBL database and received accession numbers AJ297825 to AJ297840. Journal of General Virology, 82(4), 953-962. doi:10.1099/0022-1317-82-4-953SANO, T., HATAYA, T., TERAI, Y., & SHIKATA, E. (1986). Association of a viroid-like RNA from plum dapple disease occurring in Japan. Proceedings of the Japan Academy. Ser. B: Physical and Biological Sciences, 62(3), 98-101. doi:10.2183/pjab.62.98Hernandez, C., & Flores, R. (1992). Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures. Proceedings of the National Academy of Sciences, 89(9), 3711-3715. doi:10.1073/pnas.89.9.3711Ambros, S. (1998). In vitro and in vivo self-cleavage of a viroid RNA with a mutation in the hammerhead catalytic pocket. Nucleic Acids Research, 26(8), 1877-1883. doi:10.1093/nar/26.8.1877Ambrós, S., Hernández, C., & Flores, R. (1999). Rapid generation of genetic heterogeneity in progenies from individual cDNA clones of peach latent mosaic viroid in its natural host The data reported in this paper are in the EMBL nucleotide sequence database and assigned the accession nos AJ241818–AJ241850. Journal of General Virology, 80(8), 2239-2252. doi:10.1099/0022-1317-80-8-2239Fekih Hassen, I., Massart, S., Motard, J., Roussel, S., Parisi, O., Kummert, J., … Jijakli, M. H. (2007). Molecular features of new Peach Latent Mosaic Viroid variants suggest that recombination may have contributed to the evolution of this infectious RNA. Virology, 360(1), 50-57. doi:10.1016/j.virol.2006.10.021DUBÉ, A., BOLDUC, F., BISAILLON, M., & PERREAULT, J.-P. (2011). Mapping studies of the Peach latent mosaic viroid reveal novel structural features. Molecular Plant Pathology, 12(7), 688-701. doi:10.1111/j.1364-3703.2010.00703.xBussière, F., Ouellet, J., Côté, F., Lévesque, D., & Perreault, J. P. (2000). Mapping in Solution Shows the Peach Latent Mosaic Viroid To Possess a New Pseudoknot in a Complex, Branched Secondary Structure. Journal of Virology, 74(6), 2647-2654. doi:10.1128/jvi.74.6.2647-2654.2000FLORES, R., DELGADO, S., RODIO, M.-E., AMBRÓS, S., HERNÁNDEZ, C., & SERIO, F. D. (2006). Peach latent mosaic viroid: not so latent. Molecular Plant Pathology, 7(4), 209-221. doi:10.1111/j.1364-3703.2006.00332.xDesvignes, J. C. (1976). THE VIRUS DISEASES DETECTED IN GREENHOUSE AND IN FIELD BY THE PEACH SEEDLING GF 305 INDICATOR. Acta Horticulturae, (67), 315-323. doi:10.17660/actahortic.1976.67.41DESVIGNES, J. C. (1986). PEACH LATENT MOSAIC AND ITS RELATION TO PEACH MOSAIC AND PEACH YELLOW MOSAIC VIRUS DISEASES. Acta Horticulturae, (193), 51-58. doi:10.17660/actahortic.1986.193.6Flores, R., & Llácer, G. (1989). ISOLATION OF A VIROID-LIKE RNA ASSOCIATED WITH PEACH LATENT MOSAIC DISEASE. Acta Horticulturae, (235), 325-332. doi:10.17660/actahortic.1989.235.47Rodio, M.-E., Delgado, S., Flores, R., & Serio, F. D. (2006). Variants of Peach latent mosaic viroid inducing peach calico: uneven distribution in infected plants and requirements of the insertion containing the pathogenicity determinant. Journal of General Virology, 87(1), 231-240. doi:10.1099/vir.0.81356-0Rodio, M.-E., Delgado, S., De Stradis, A., Gómez, M.-D., Flores, R., & Di Serio, F. (2007). A Viroid RNA with a Specific Structural Motif Inhibits Chloroplast Development. The Plant Cell, 19(11), 3610-3626. doi:10.1105/tpc.106.049775Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R., & Di Serio, F. (2012). Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. The Plant Journal, 70(6), 991-1003. doi:10.1111/j.1365-313x.2012.04940.xWang, L., He, Y., Kang, Y., Hong, N., Farooq, A. B. U., Wang, G., & Xu, W. (2013). Virulence determination and molecular features of peach latent mosaic viroid isolates derived from phenotypically different peach leaves: A nucleotide polymorphism in L11 contributes to symptom alteration. Virus Research, 177(2), 171-178. doi:10.1016/j.virusres.2013.08.005Zhang, Z., Qi, S., Tang, N., Zhang, X., Chen, S., Zhu, P., … Wu, Q. (2014). Discovery of Replicating Circular RNAs by RNA-Seq and Computational Algorithms. PLoS Pathogens, 10(12), e1004553. doi:10.1371/journal.ppat.1004553Serra, P., Messmer, A., Sanderson, D., James, D., & Flores, R. (2018). Apple hammerhead viroid-like RNA is a bona fide viroid: Autonomous replication and structural features support its inclusion as a new member in the genus Pelamoviroid. Virus Research, 249, 8-15. doi:10.1016/j.virusres.2018.03.001Messmer, A., Sanderson, D., Braun, G., Serra, P., Flores, R., & James, D. (2017). Molecular and phylogenetic identification of unique isolates of hammerhead viroid-like RNA from ‘Pacific Gala’ apple (Malus domestica) in Canada. Canadian Journal of Plant Pathology, 39(3), 342-353. doi:10.1080/07060661.2017.1354334Wu, Q., Wang, Y., Cao, M., Pantaleo, V., Burgyan, J., Li, W.-X., & Ding, S.-W. (2012). Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm. Proceedings of the National Academy of Sciences, 109(10), 3938-3943. doi:10.1073/pnas.1117815109Hadidi, A., Flores, R., Candresse, T., & Barba, M. (2016). Next-Generation Sequencing and Genome Editing in Plant Virology. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.0132

    Identification and characterization of privet leaf blotch-associated virus, a novel idaeovirus

    Get PDF
    A novel virus has been identified by next-generation sequencing (NGS) in privet (Ligustrum japonicum L.) affected by a graft-transmissible disease characterized by leaf blotch symptoms resembling infectious variegation, a virus-like privet disease with an unclear aetiology. This virus, which has been tentatively named ‘privet leaf blotch-associated virus’ (PrLBaV), was absent in non-symptomatic privet plants, as revealed by NGS and reverse transcription-polymerase chain reaction (RT-PCR). Molecular characterization of PrLBaV showed that it has a segmented genome composed of two positive single-stranded RNAs, one of which (RNA1) is monocistronic and codes for the viral replicase, whereas the other (RNA2) contains two open reading frames (ORFs), ORF2a and ORF2b, coding for the putative movement (p38) and coat (p30) proteins, respectively. ORF2b is very probably expressed through a subgenomic RNA starting with six nucleotides (AUAUCU) that closely resemble those found in the 5′-terminal end of genomic RNA1 and RNA2 (AUAUUU and AUAUAU, respectively). The molecular signatures identified in the PrLBaV RNAs and proteins resemble those of Raspberry bushy dwarf virus (RBDV), currently the only member of the genus Idaeovirus. These data, together with phylogenetic analyses, are consistent with the proposal of considering PrLBaV as a representative of the second species in the genus Idaeovirus. Transient expression of a recombinant PrLBaV p38 fused to green fluorescent protein in leaves of Nicotiana benthamiana, coupled with confocal laser scanning microscopy assays, showed that it localizes at cell plasmodesmata, strongly supporting its involvement in viral movement/trafficking and providing the first functional characterization of an idaeovirus encoded protein

    Discovery and Survey of a New Mandarivirus Associated with Leaf Yellow Mottle Disease of Citrus in Pakistan.

    Get PDF
    During biological indexing for viruses in citrus trees, in a collection of Symons sweet orange (SSO) (Citrus sinensis L. Osbeck) graft inoculated with bark tissues of citrus trees from the Punjab Province in Pakistan, several SSO trees exhibited leaf symptoms of vein yellowing and mottle. High-throughput sequencing by Illumina of RNA preparation depleted of ribosomal RNAs from one symptomatic tree, followed by BLAST analyses, allowed identification of a novel virus, tentatively named citrus yellow mottle-associated virus (CiYMaV). Genome features of CiYMaV are typical of members of the genus Mandarivirus (family Alphaflexiviridae). Virus particles with elongated flexuous shape and size resembling those of mandariviruses were observed by transmission electron microscopy. The proteins encoded by CiYMaV share high sequence identity, conserved motifs, and phylogenetic relationships with the corresponding proteins encoded by Indian citrus ringspot virus (ICRSV) and citrus yellow vein clearing virus (CYVCV), the two current members of the genus Mandarivirus. Although CYVCV is the virus most closely related to CiYMaV, the two viruses can be serologically and biologically discriminated from each other. A reverse-transcription PCR method designed to specifically detect CiYMaV revealed high prevalence (62%) of this virus in 120 citrus trees from the Punjab Province, Pakistan, where the novel virus was found mainly in mixed infection with CYVCV and citrus tristeza virus. However, a preliminary survey on samples from 200 citrus trees from the Yunnan Province, China failed to detect CiYMaV in this region, suggesting that the molecular, serological, and biological data provided here are timely and can help to prevent the spread of this virus in citrus-producing countries

    Specific Argonautes Selectively Bind Small RNAs Derived from Potato Spindle Tuber Viroid and Attenuate Viroid Accumulation In Vivo

    Full text link
    Research in the laboratory of R. F. is currently funded by grant BFU2011-28443 from the Ministerio de Economia y Competitividad (MINECO, Spain). S.M. has been supported by a fellowship and a pre-doctoral contract from MINECO. Research in the laboratory of B.N. and F.D.S. has been funded by a dedicated grant from the Ministero dell'Economia e Finanze Italiano to the CNR (CISIA; Legge no. 191/2009). Research in the laboratory of J.C.C. was supported by grants from the National Science Foundation (MCB-0956526 and MCB-1231726) and the National Institutes of Health (AI043288)Minoia, S.; Carbonell, A.; Di Serio, F.; Gisel, A.; Carrinton, JC.; Navarro, B.; Flores Pedauye, R. (2014). Specific Argonautes Selectively Bind Small RNAs Derived from Potato Spindle Tuber Viroid and Attenuate Viroid Accumulation In Vivo. Journal of Virology. 88(20):11933-11945. https://doi.org/10.1128/JVI.01404-14S11933119458820Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243Tsagris, E. M., Martínez de Alba, Á. E., Gozmanova, M., & Kalantidis, K. (2008). Viroids. Cellular Microbiology, 10(11), 2168-2179. doi:10.1111/j.1462-5822.2008.01231.xDing, B. (2009). The Biology of Viroid-Host Interactions. Annual Review of Phytopathology, 47(1), 105-131. doi:10.1146/annurev-phyto-080508-081927Diener, T. O., & Raymer, W. B. (1967). Potato Spindle Tuber Virus: A Plant Virus with Properties of a Free Nucleic Acid. Science, 158(3799), 378-381. doi:10.1126/science.158.3799.378Gross, H. J., Domdey, H., Lossow, C., Jank, P., Raba, M., Alberty, H., & Sänger, H. L. (1978). Nucleotide sequence and secondary structure of potato spindle tuber viroid. Nature, 273(5659), 203-208. doi:10.1038/273203a0Grill, L. K., & Semancik, J. S. (1978). RNA sequences complementary to citrus exocortis viroid in nucleic acid preparations from infected Gynura aurantiaca. Proceedings of the National Academy of Sciences, 75(2), 896-900. doi:10.1073/pnas.75.2.896Ishikawa, M., Meshi, T., Ohno, T., Okada, Y., Sano, T., Ueda, I., & Shikata, E. (1984). A revised replication cycle for viroids: The role of longer than unit length RNA in viroid replication. Molecular and General Genetics MGG, 196(3), 421-428. doi:10.1007/bf00436189Branch, A. D., Benenfeld, B. J., & Robertson, H. D. (1988). Evidence for a single rolling circle in the replication of potato spindle tuber viroid. Proceedings of the National Academy of Sciences, 85(23), 9128-9132. doi:10.1073/pnas.85.23.9128Feldstein, P. A., Hu, Y., & Owens, R. A. (1998). Precisely full length, circularizable, complementary RNA: An infectious form of potato spindle tuber viroid. Proceedings of the National Academy of Sciences, 95(11), 6560-6565. doi:10.1073/pnas.95.11.6560Daros, J.-A., & Flores, R. (2004). Arabidopsis thaliana has the enzymatic machinery for replicating representative viroid species of the family Pospiviroidae. Proceedings of the National Academy of Sciences, 101(17), 6792-6797. doi:10.1073/pnas.0401090101MÜHLBACH, H.-P., & SÄNGER, H. L. (1979). Viroid replication is inhibited by α-amanitin. Nature, 278(5700), 185-188. doi:10.1038/278185a0Flores, R., & Semancik, J. S. (1982). Properties of a cell-free system for synthesis of citrus exocortis viroid. Proceedings of the National Academy of Sciences, 79(20), 6285-6288. doi:10.1073/pnas.79.20.6285Schindler, I.-M., & Mühlbach, H.-P. (1992). Involvement of nuclear DNA-dependent RNA polymerases in potato spindle tuber viroid replication: a reevaluation. Plant Science, 84(2), 221-229. doi:10.1016/0168-9452(92)90138-cGas, M.-E., Hernández, C., Flores, R., & Daròs, J.-A. (2007). Processing of Nuclear Viroids In Vivo: An Interplay between RNA Conformations. PLoS Pathogens, 3(11), e182. doi:10.1371/journal.ppat.0030182Nohales, M.-A., Flores, R., & Daros, J.-A. (2012). Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase. Proceedings of the National Academy of Sciences, 109(34), 13805-13810. doi:10.1073/pnas.1206187109Gas, M.-E., Molina-Serrano, D., Hernández, C., Flores, R., & Daròs, J.-A. (2008). Monomeric Linear RNA of Citrus Exocortis Viroid Resulting from Processing In Vivo Has 5′-Phosphomonoester and 3′-Hydroxyl Termini: Implications for the RNase and RNA Ligase Involved in Replication. Journal of Virology, 82(20), 10321-10325. doi:10.1128/jvi.01229-08Flores, R., Daròs, J.-A., & Hernández, C. (2000). Avsunviroidae family: Viroids containing hammerhead ribozymes. Advances in Virus Research, 271-323. doi:10.1016/s0065-3527(00)55006-4Qi, Y., Peélissier, T., Itaya, A., Hunt, E., Wassenegger, M., & Ding, B. (2004). Direct Role of a Viroid RNA Motif in Mediating Directional RNA Trafficking across a Specific Cellular Boundary[W]. The Plant Cell, 16(7), 1741-1752. doi:10.1105/tpc.021980Zhong, X., Tao, X., Stombaugh, J., Leontis, N., & Ding, B. (2007). Tertiary structure and function of an RNA motif required for plant vascular entry to initiate systemic trafficking. The EMBO Journal, 26(16), 3836-3846. doi:10.1038/sj.emboj.7601812Takeda, R., Petrov, A. I., Leontis, N. B., & Ding, B. (2011). A Three-Dimensional RNA Motif in Potato spindle tuber viroid Mediates Trafficking from Palisade Mesophyll to Spongy Mesophyll in Nicotiana benthamiana  . The Plant Cell, 23(1), 258-272. doi:10.1105/tpc.110.081414Zhong, X., Archual, A. J., Amin, A. A., & Ding, B. (2008). A Genomic Map of Viroid RNA Motifs Critical for Replication and Systemic Trafficking. The Plant Cell, 20(1), 35-47. doi:10.1105/tpc.107.056606Carthew, R. W., & Sontheimer, E. J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell, 136(4), 642-655. doi:10.1016/j.cell.2009.01.035Ding, S.-W. (2010). RNA-based antiviral immunity. Nature Reviews Immunology, 10(9), 632-644. doi:10.1038/nri2824Axtell, M. J. (2013). Classification and Comparison of Small RNAs from Plants. Annual Review of Plant Biology, 64(1), 137-159. doi:10.1146/annurev-arplant-050312-120043Incarbone, M., & Dunoyer, P. (2013). RNA silencing and its suppression: novel insights from in planta analyses. Trends in Plant Science, 18(7), 382-392. doi:10.1016/j.tplants.2013.04.001Pumplin, N., & Voinnet, O. (2013). RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nature Reviews Microbiology, 11(11), 745-760. doi:10.1038/nrmicro3120Voinnet, O. (2008). Use, tolerance and avoidance of amplified RNA silencing by plants. Trends in Plant Science, 13(7), 317-328. doi:10.1016/j.tplants.2008.05.004Mallory, A., & Vaucheret, H. (2010). Form, Function, and Regulation of ARGONAUTE Proteins. The Plant Cell, 22(12), 3879-3889. doi:10.1105/tpc.110.080671Bologna, N. G., & Voinnet, O. (2014). The Diversity, Biogenesis, and Activities of Endogenous Silencing Small RNAs in Arabidopsis. Annual Review of Plant Biology, 65(1), 473-503. doi:10.1146/annurev-arplant-050213-035728Morel, J.-B., Godon, C., Mourrain, P., Béclin, C., Boutet, S., Feuerbach, F., … Vaucheret, H. (2002). Fertile Hypomorphic ARGONAUTE (ago1) Mutants Impaired in Post-Transcriptional Gene Silencing and Virus Resistance. The Plant Cell, 14(3), 629-639. doi:10.1105/tpc.010358Baumberger, N., & Baulcombe, D. C. (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proceedings of the National Academy of Sciences, 102(33), 11928-11933. doi:10.1073/pnas.0505461102Qu, F., Ye, X., & Morris, T. J. (2008). Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proceedings of the National Academy of Sciences, 105(38), 14732-14737. doi:10.1073/pnas.0805760105Montgomery, T. A., Howell, M. D., Cuperus, J. T., Li, D., Hansen, J. E., Alexander, A. L., … Carrington, J. C. (2008). Specificity of ARGONAUTE7-miR390 Interaction and Dual Functionality in TAS3 Trans-Acting siRNA Formation. Cell, 133(1), 128-141. doi:10.1016/j.cell.2008.02.033Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M., & Watanabe, Y. (2008). The Mechanism Selecting the Guide Strand from Small RNA Duplexes is Different Among Argonaute Proteins. Plant and Cell Physiology, 49(4), 493-500. doi:10.1093/pcp/pcn043Alvarado, V. Y., & Scholthof, H. B. (2012). AGO2: A New Argonaute Compromising Plant Virus Accumulation. Frontiers in Plant Science, 2. doi:10.3389/fpls.2011.00112Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Gilbert, K. B., Montgomery, T. A., Nguyen, T., … Carrington, J. C. (2012). Functional Analysis of Three Arabidopsis ARGONAUTES Using Slicer-Defective Mutants  . The Plant Cell, 24(9), 3613-3629. doi:10.1105/tpc.112.099945Zilberman, D., Cao, X., & Jacobsen, S. E. (2003). ARGONAUTE4 Control of Locus-Specific siRNA Accumulation and DNA and Histone Methylation. Science, 299(5607), 716-719. doi:10.1126/science.1079695Havecker, E. R., Wallbridge, L. M., Hardcastle, T. J., Bush, M. S., Kelly, K. A., Dunn, R. M., … Baulcombe, D. C. (2010). TheArabidopsisRNA-Directed DNA Methylation Argonautes Functionally Diverge Based on Their Expression and Interaction with Target Loci  . The Plant Cell, 22(2), 321-334. doi:10.1105/tpc.109.072199Qi, Y., He, X., Wang, X.-J., Kohany, O., Jurka, J., & Hannon, G. J. (2006). Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature, 443(7114), 1008-1012. doi:10.1038/nature05198Mallory, A. C., Hinze, A., Tucker, M. R., Bouché, N., Gasciolli, V., Elmayan, T., … Laux, T. (2009). Redundant and Specific Roles of the ARGONAUTE Proteins AGO1 and ZLL in Development and Small RNA-Directed Gene Silencing. PLoS Genetics, 5(9), e1000646. doi:10.1371/journal.pgen.1000646Várallyay, É., Válóczi, A., Ágyi, Á., Burgyán, J., & Havelda, Z. (2010). Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. The EMBO Journal, 29(20), 3507-3519. doi:10.1038/emboj.2010.215Nakasugi, K., Crowhurst, R. N., Bally, J., Wood, C. C., Hellens, R. P., & Waterhouse, P. M. (2013). De Novo Transcriptome Sequence Assembly and Analysis of RNA Silencing Genes of Nicotiana benthamiana. PLoS ONE, 8(3), e59534. doi:10.1371/journal.pone.0059534Navarro, B., Gisel, A., Rodio, M.-E., Delgado, S., Flores, R., & Di Serio, F. (2012). Viroids: How to infect a host and cause disease without encoding proteins. Biochimie, 94(7), 1474-1480. doi:10.1016/j.biochi.2012.02.020Hammann, C., & Steger, G. (2012). Viroid-specific small RNA in plant disease. RNA Biology, 9(6), 809-819. doi:10.4161/rna.19810Vogt, U., Pélissier, T., Pütz, A., Razvi, F., Fischer, R., & Wassenegger, M. (2004). Viroid-induced RNA silencing of GFP-viroid fusion transgenes does not induce extensive spreading of methylation or transitive silencing. The Plant Journal, 38(1), 107-118. doi:10.1111/j.1365-313x.2004.02029.xItaya, A., Zhong, X., Bundschuh, R., Qi, Y., Wang, Y., Takeda, R., … Ding, B. (2007). A Structured Viroid RNA Serves as a Substrate for Dicer-Like Cleavage To Produce Biologically Active Small RNAs but Is Resistant to RNA-Induced Silencing Complex-Mediated Degradation. Journal of Virology, 81(6), 2980-2994. doi:10.1128/jvi.02339-06Carbonell, A., Martínez de Alba, Á.-E., Flores, R., & Gago, S. (2008). Double-stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families. Virology, 371(1), 44-53. doi:10.1016/j.virol.2007.09.031SCHWIND, N., ZWIEBEL, M., ITAYA, A., DING, B., WANG, M.-B., KRCZAL, G., & WASSENEGGER, M. (2009). RNAi-mediated resistance toPotato spindle tuber viroidin transgenic tomato expressing a viroid hairpin RNA construct. Molecular Plant Pathology, 10(4), 459-469. doi:10.1111/j.1364-3703.2009.00546.xDi Serio, F., Martínez de Alba, A.-E., Navarro, B., Gisel, A., & Flores, R. (2010). RNA-Dependent RNA Polymerase 6 Delays Accumulation and Precludes Meristem Invasion of a Viroid That Replicates in the Nucleus. Journal of Virology, 84(5), 2477-2489. doi:10.1128/jvi.02336-09Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R., & Di Serio, F. (2012). Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. The Plant Journal, 70(6), 991-1003. doi:10.1111/j.1365-313x.2012.04940.xSerra, P., Bani Hashemian, S. M., Fagoaga, C., Romero, J., Ruiz-Ruiz, S., Gorris, M. T., … Duran-Vila, N. (2013). Virus-Viroid Interactions: Citrus Tristeza Virus Enhances the Accumulation of Citrus Dwarfing Viroid in Mexican Lime via Virus-Encoded Silencing Suppressors. Journal of Virology, 88(2), 1394-1397. doi:10.1128/jvi.02619-13Martinez, G., Castellano, M., Tortosa, M., Pallas, V., & Gomez, G. (2013). A pathogenic non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants. Nucleic Acids Research, 42(3), 1553-1562. doi:10.1093/nar/gkt968Grimsley, N., Hohn, B., Hohn, T., & Walden, R. (1986). «Agroinfection,» an alternative route for viral infection of plants by using the Ti plasmid. Proceedings of the National Academy of Sciences, 83(10), 3282-3286. doi:10.1073/pnas.83.10.3282Llave, C., Xie, Z., Kasschau, K. D., & Carrington, J. C. (2002). Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA. Science, 297(5589), 2053-2056. doi:10.1126/science.1076311Cuperus, J. T., Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Burke, R. T., Takeda, A., … Carrington, J. C. (2010). Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nature Structural & Molecular Biology, 17(8), 997-1003. doi:10.1038/nsmb.1866Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3), R25. doi:10.1186/gb-2009-10-3-r25Várallyay, É., & Havelda, Z. (2013). Unrelated viral suppressors of RNA silencing mediate the control of ARGONAUTE1 level. Molecular Plant Pathology, 14(6), 567-575. doi:10.1111/mpp.12029Mallory, A. C., & Vaucheret, H. (2009). ARGONAUTE 1 homeostasis invokes the coordinate action of the microRNA and siRNA pathways. EMBO reports, 10(5), 521-526. doi:10.1038/embor.2009.32Matoušek, J., Kozlová, P., Orctová, L., Schmitz, A., Pešina, K., Bannach, O., … Riesner, D. (2007). Accumulation of viroid-specific small RNAs and increase in nucleolytic activities linked to viroid-caused pathogenesis. Biological Chemistry, 388(1), 1-13. doi:10.1515/bc.2007.001Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., … Qi, Y. (2008). Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5′ Terminal Nucleotide. Cell, 133(1), 116-127. doi:10.1016/j.cell.2008.02.034Ho, T., Wang, H., Pallett, D., & Dalmay, T. (2007). Evidence for targeting common siRNA hotspots and GC preference by plant Dicer-like proteins. FEBS Letters, 581(17), 3267-3272. doi:10.1016/j.febslet.2007.06.022Zhang, Y., Yan, C., & Kuang, H. (2014). GC content fluctuation around plant small RNA-generating sites. FEBS Letters, 588(5), 764-769. doi:10.1016/j.febslet.2014.01.023Qi, Y., & Ding, B. (2003). Inhibition of Cell Growth and Shoot Development by a Specific Nucleotide Sequence in a Noncoding Viroid RNA. The Plant Cell, 15(6), 1360-1374. doi:10.1105/tpc.011585Schnölzer, M., Haas, B., Ramm, K., Hofmann, H., & Sänger, H. L. (1985). Correlation between structure and pathogenicity of potato spindle tuber viroid (PSTV). The EMBO Journal, 4(9), 2181-2190. doi:10.1002/j.1460-2075.1985.tb03913.xMartinez de Alba, A. E., Jauvion, V., Mallory, A. C., Bouteiller, N., & Vaucheret, H. (2011). The miRNA pathway limits AGO1 availability during siRNA-mediated PTGS defense against exogenous RNA. Nucleic Acids Research, 39(21), 9339-9344. doi:10.1093/nar/gkr590Campos, L., Granell, P., Tárraga, S., López-Gresa, P., Conejero, V., Bellés, J. M., … Lisón, P. (2014). Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens. Plant Physiology and Biochemistry, 77, 35-43. doi:10.1016/j.plaphy.2014.01.016Wang, M.-B., Bian, X.-Y., Wu, L.-M., Liu, L.-X., Smith, N. A., Isenegger, D., … Waterhouse, P. M. (2004). On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proceedings of the National Academy of Sciences, 101(9), 3275-3280. doi:10.1073/pnas.0400104101Gómez, G., & Pallás, V. (2007). Mature monomeric forms of Hop stunt viroid resist RNA silencing in transgenic plants. The Plant Journal, 51(6), 1041-1049. doi:10.1111/j.1365-313x.2007.03203.xSchuck, J., Gursinsky, T., Pantaleo, V., Burgyán, J., & Behrens, S.-E. (2013). AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system. Nucleic Acids Research, 41(9), 5090-5103. doi:10.1093/nar/gkt193Flynt, A., Liu, N., Martin, R., & Lai, E. C. (2009). Dicing of viral replication intermediates during silencing of latent Drosophila viruses. Proceedings of the National Academy of Sciences, 106(13), 5270-5275. doi:10.1073/pnas.0813412106Siu, R. W. C., Fragkoudis, R., Simmonds, P., Donald, C. L., Chase-Topping, M. E., Barry, G., … Kohl, A. (2011). Antiviral RNA Interference Responses Induced by Semliki Forest Virus Infection of Mosquito Cells: Characterization, Origin, and Frequency-Dependent Functions of Virus-Derived Small Interfering RNAs. Journal of Virology, 85(6), 2907-2917. doi:10.1128/jvi.02052-10Hernandez, C., & Flores, R. (1992). Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures. Proceedings of the National Academy of Sciences, 89(9), 3711-3715. doi:10.1073/pnas.89.9.3711Malfitano, M., Di Serio, F., Covelli, L., Ragozzino, A., Hernández, C., & Flores, R. (2003). Peach latent mosaic viroid variants inducing peach calico (extreme chlorosis) contain a characteristic insertion that is responsible for this symptomatology. Virology, 313(2), 492-501. doi:10.1016/s0042-6822(03)00315-5Rodio, M.-E., Delgado, S., De Stradis, A., Gómez, M.-D., Flores, R., & Di Serio, F. (2007). A Viroid RNA with a Specific Structural Motif Inhibits Chloroplast Development. The Plant Cell, 19(11), 3610-3626. doi:10.1105/tpc.106.049775Iwakawa, H., & Tomari, Y. (2013). Molecular Insights into microRNA-Mediated Translational Repression in Plants. Molecular Cell, 52(4), 591-601. doi:10.1016/j.molcel.2013.10.033Liu, Q., Wang, F., & Axtell, M. J. (2014). Analysis of Complementarity Requirements for Plant MicroRNA Targeting Using a Nicotiana benthamiana Quantitative Transient Assay  . The Plant Cell, 26(2), 741-753. doi:10.1105/tpc.113.120972Shimura, H., Pantaleo, V., Ishihara, T., Myojo, N., Inaba, J., Sueda, K., … Masuta, C. (2011). A Viral Satellite RNA Induces Yellow Symptoms on Tobacco by Targeting a Gene Involved in Chlorophyll Biosynthesis using the RNA Silencing Machinery. PLoS Pathogens, 7(5), e1002021. doi:10.1371/journal.ppat.1002021Smith, N. A., Eamens, A. L., & Wang, M.-B. (2011). Viral Small Interfering RNAs Target Host Genes to Mediate Disease Symptoms in Plants. PLoS Pathogens, 7(5), e1002022. doi:10.1371/journal.ppat.1002022Eamens, A. L., Smith, N. A., Dennis, E. S., Wassenegger, M., & Wang, M.-B. (2014). In Nicotiana species, an artificial microRNA corresponding to the virulence modulating region of Potato spindle tuber viroid directs RNA silencing of a soluble inorganic pyrophosphatase gene and the development of abnormal phenotypes. Virology, 450-451, 266-277. doi:10.1016/j.virol.2013.12.01

    Symptomatic plant viroid infections in phytopathogenic fungi: a request for a critical reassessment

    Full text link
    Serra, P.; Carbonell, A.; Navarro, B.; Gago Zachert, S.; Li, S.; Di Serio, F.; Flores Pedauye, R. (2020). Symptomatic plant viroid infections in phytopathogenic fungi: a request for a critical reassessment. Proceedings of the National Academy of Sciences of the United States of America (Online). 117(19):10126-10128. https://doi.org/10.1073/pnas.1922249117S10126101281171

    Combined IASI-NG and MWS observations for the retrieval of cloud liquid and ice water path: a deep learning artificial intelligence approach

    Get PDF
    A neural network (NN) approach is proposed to combine future infrared (IASI-NG) and microwave (MWS) observations to retrieve cloud liquid and ice water path. The methodology is applied to simulated IASI-NG and MWS observations in the period January–October 2019. IASI-NG and MWS observations are simulated globally at synoptic hours (00:00, 06:00, 12:00, 18:00 UTC) and on a regular spatial grid (0.125° × 0.125°) from ECMWF 5-generation reanalysis (ERA5). The state-of-the-art σ-IASI and RTTOV radiative transfer codes are used to simulate IASI-NG and MWS observations, respectively, from the earth's state vector given by ERA5. A principal component analysis of the simulated IASI-NG observations is performed. Accordingly, a NN is developed to retrieve cloud liquid and ice water path from a combination of 24 MWS channels and 30 IASI-NG PCs. Validation indicates that this combination results in liquid and ice water path retrievals with overall accuracy of 1.85 10 −2 kg/m 2 and 1.18 10 −2 kg/m 2 , respectively, and 0.97 correlation with respect to reference values. The root-mean-square error (RMSE) for CLWP results in about 30% of the mean value (5.91 10 −2 kg/m 2 ) and 22% of the variability (1-sigma). Similarly, the RMSE for CIWP results in about 41% of the mean value (2.91 10 −2 kg/m 2 ) and 22% of the variability. Two more NN are developed, retrieving cloud liquid and ice water path from microwave observations only (24 MWS channels) and infrared observations only (30 IASI-NG PCs), demonstrating quantitatively the advantage of using the combination of infrared and microwave observations with respect to either one alone

    Deep Sequencing of the Small RNAs Derived from Two Symptomatic Variants of a Chloroplastic Viroid: Implications for Their Genesis and for Pathogenesis

    Get PDF
    Northern-blot hybridization and low-scale sequencing have revealed that plants infected by viroids, non-protein-coding RNA replicons, accumulate 21–24 nt viroid-derived small RNAs (vd-sRNAs) similar to the small interfering RNAs, the hallmarks of RNA silencing. These results strongly support that viroids are elicitors and targets of the RNA silencing machinery of their hosts. Low-scale sequencing, however, retrieves partial datasets and may lead to biased interpretations. To overcome this restraint we have examined by deep sequencing (Solexa-Illumina) and computational approaches the vd-sRNAs accumulating in GF-305 peach seedlings infected by two molecular variants of Peach latent mosaic viroid (PLMVd) inciting peach calico (albinism) and peach mosaic. Our results show in both samples multiple PLMVd-sRNAs, with prevalent 21-nt (+) and (−) RNAs presenting a biased distribution of their 5′ nucleotide, and adopting a hotspot profile along the genomic (+) and (−) RNAs. Dicer-like 4 and 2 (DCL4 and DCL2, respectively), which act hierarchically in antiviral defense, likely also mediate the genesis of the 21- and 22-nt PLMVd-sRNAs. More specifically, because PLMVd replicates in plastids wherein RNA silencing has not been reported, DCL4 and DCL2 should dice the PLMVd genomic RNAs during their cytoplasmic movement or the PLMVd-dsRNAs generated by a cytoplasmic RNA-dependent RNA polymerase (RDR), like RDR6, acting in concert with DCL4 processing. Furthermore, given that vd-sRNAs derived from the 12–14-nt insertion containing the pathogenicity determinant of peach calico are underrepresented, it is unlikely that symptoms may result from the accidental targeting of host mRNAs by vd-sRNAs from this determinant guiding the RNA silencing machinery

    Viroids: from genotype to phenotype just relying on RNA sequence and structural motifs

    Get PDF
    [EN] As a consequence of two unique physical properties, small size and circularity, viroid RNAs do not code for proteins and thus depend on RNA sequence/structural motifs for interacting with host proteins that mediate their invasion, replication, spread, and circumvention of defensive barriers. Viroid genomes fold up on themselves adopting collapsed secondary structures wherein stretches of nucleotides stabilized by Watson Crick pairs are flanked by apparently unstructured loops. However, compelling data show that they are instead stabilized by alternative non canonical pairs and that specific loops in the rod like secondary structure, characteristic of Potato spindle tuber viroid and most other members of the family Pospiviroidae, are critical for replication and systemic trafficking. In contrast, rather than folding into a rod-like secondary structure, most members of the family Avsunviroidae adopt multibranched conformations occasionally stabilized by kissing-loop interactions critical for viroid viability in vivo. Besides these most stable secondary structures, viroid RNAs alternatively adopt during replication transient metastable conformations containing elements of local higher-order structure, prominent among which are the hammerhead ribozymes catalyzing a key replicative step in the family Avsunviroidae, and certain conserved hairpins that also mediate replication steps in the family Pospiviroidae. Therefore, different RNA structures either global or local determine different functions, thus highlighting the need for in-depth structural studies on viroid RNAs.We thank Dr. J. A. Daros for critical reading and suggestions, Dr. B. Ding for kindly providing Figures 4 and 5, and Dr. M. de la Pena for kindly providing Figure 6. Research in Ricardo FLores laboratory is presently supported by grant BFU2011-28443 from the Ministerio de Educacion y Ciencia (MEC) of Spain. During this work Pedro Serra has been supported by postdoctoral contracts from the Generalitat Valenciana (APOSTD/2010, program VALi+d) and the MEC (program Juan de la Cierva), and Sofia Minoia by a predoctoral fellowship from the MEC.Flores Pedauye, R.; Serra Alfonso, P.; Minoia, S.; Di Serio, F.; Navarro, B. (2012). Viroids: from genotype to phenotype just relying on RNA sequence and structural motifs. Frontiers in Microbiology. 3:217-1-217-13. https://doi.org/10.3389/fmicb.2012.00217S217-1217-13
    corecore